Chem. Ber. 115, 444 – 451 (1982)

Reaktion von 1,2,4,5-Tetrazin-3,6-dicarbonsäure-dimethylester mit 3,3-Dimethylcyclopropen: Unerwartete Bildung eines [2:3]-Addukts

Franz-Xaver Huber^a, Jürgen Sauer*^a, Walter S. McDonald ^b und Heinrich Nöth*^c

Institut für Organische Chemie der Universität Regensburg^a, Universitätsstr. 31, D-8400 Regensburg,

Department of Inorganic and Structural Chemistry, The University Leeds^b, England, und

Institut für Anorganische Chemie der Universität München^c, Meiserstr. 1, D-8000 München 2

Eingegangen am 7. Mai 1981

Die Umsetzung des 1,2,4,5-Tetrazin-3,6-dicarbonsäure-dimethylesters (1) mit 3,3-Dimethylcyclopropen (2) liefert bei tieferer Temperatur die erwarteten Produkte 3 und 4; bei höherer Temperatur (>80°C) entsteht daneben ein [2:3]-Addukt 7, dessen Konstitution mit Hilfe spektroskopischer Befunde und Röntgenstrukturanalyse geklärt werden konnte.

Reaction of Dimethyl 1,2,4,5-Tetrazine-3,6-dicarboxylate with 3,3-Dimethylcyclopropene: Unexpected Formation of a [2:3]-Adduct

Reaction of tetrazine 1 with 3,3-dimethylcyclopropene (2) at lower temperature leads to the expected products 3 and 4; in addition a [2:3]-adduct 7 is isolated at higher temperature (>80 °C). Its structure was ascertained by spectroscopic data and X-ray structure analysis.

Die hohe Dienaktivität des Tetrazindiesters 1 bei [4+2]-Cycloadditionen mit inversem Elektronenbedarf wurde erstmals von *Nenitzescu* und Mitarbb. erkannt¹⁾; die Umsetzung mit Cyclopropenen machte 3,4-Diazanorcaradiene (z. B. 3) und sog. Bisaddukte (z. B. 4) glatt zugänglich^{2,3)}. Insbesondere die polycyclischen Azoverbindungen vom Typ 4 erwiesen sich als geeignete Edukte zur Synthese von Homotropilidenen, Bishomodewarbenzolen und Bis-σ-homobenzolen⁴⁾.

Für die Gewinnung größerer Mengen an 4 wurde der Tetrazinester 1 mit überschüssigem Cyclopropen 2 in Acetonitril bei $80\,^{\circ}$ C umgesetzt. Neben dem erwarteten 4 isolierte man – insbesondere in einem Ansatz, der kurze Zeit wesentlich höher ($\approx 110\,^{\circ}$ C) erhitzt worden war – eine farblose, kristalline Substanz, laut CHN-Analyse und Massenspektrum eine Verbindung der Summenformel $C_{27}H_{36}N_4O_8$. Die Summenformel läßt ein 1:1-Addukt aus 4 und 3 (oder 5 bzw. 6) bzw. ein 1:2-Addukt aus 2 und 3 (oder 5 bzw. 6) zu.

© Verlag Chemie GmbH, D-6940 Weinheim, 1982 0009 – 2940/82/0202 – 0444 \$ 02.50/0

Das wenig aussagekräftige IR-Spektrum zeigte eindeutig nur die Anwesenheit von verschieden gebundenen Estergruppen und aliphatische CH-Schwingungen. Das UV-Spektrum wies mit $\lg \varepsilon_{305} = 3.844$ und $\lg \varepsilon_{273} = 4.021$ einen starken Chromophor auf. Die Interpretation des ¹H-NMR-Spektrums in CDCl₃, CD₃CN, C₆D₅NO₂ und C₅D₅N war dadurch erschwert, daß in verschiedenem Ausmaß chemisch verschieden gebundene Methylgruppen und tertiäre Protonen magnetisch äquivalent wurden (s. exp. Teil). Nur in C₆D₆ konnte man den kompletten Satz aller Protonen erkennen: Zwei Singuletts bei $\delta = 0.80$ und 1.02 (je 6H), zwei mit einer Kopplungskonstante J < 1 Hz zum Dublett aufgespaltene Signale bei $\delta = 1.62$ und 1.92 (je 3 H), ein AB-System bei $\delta = 1.77$ und 2.13 (J = 8.4 Hz, je 2 H), zwei Singuletts bei $\delta = 3.37$ und 3.52 (je 6H) sowie ein zweites AB-System bei $\delta = 6.33$ und 6.81 (J = 7.2 Hz, je 1 H), dessen Tieffeldteil eine Fernkopplung zu den beiden Methylgruppen bei $\delta = 1.62$ und 1.92 aufwies.

Eine eindeutige strukturelle Sicherung der Verbindung $C_{27}H_{36}N_4O_8$ gelang weder durch die ¹H-NMR- noch durch die ¹³C-NMR-Daten (s. exp. Teil). Erst die Röntgenstrukturanalyse eines Einkristalls ergab für diese Verbindung die Konstitution **7a** bzw. die in **7b** und in Abb. 1 wiedergegebene Konfiguration. Im Pentacyclus **7** findet man zwei Diazanorcaradien-Einheiten über die 9b- und 9c-Position gebunden; ein Kohlenstoff des ringgeöffneten 3,3-Dimethylcyclopropens (2) überbrückt die Positionen N-4 und N-6.

 1 H- und 13 C-NMR-Spektrum stehen mit dem Strukturvorschlag im Einklang. Das UV-Spektrum zeigt gegenüber dem Vergleichschromophor 11 (lg $\epsilon_{284}=3.937$) eine langwellige Vorbande bei gleichzeitiger Extinktionserhöhung, möglicherweise verursacht durch eine through-space-Wechselwirkung.

$$\begin{array}{c} \text{H-\bar{c}-$CH=C(CH_3)_2$} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

Als Bildungsweisen für 7 bieten sich zwei Alternativwege an, die experimentell überprüft werden können:

- 1. Ringöffnung von 2 unter Bildung des Vinylcarbens 8, das mit Diazanorcaradien 3 zum Azomethin-Ylid 9 reagiert; 9 bildet mit einem zweiten Moläquivalent 3 als Dipolarophil Verbindung 7.
- 2. Die (möglicherweise reversible) Addition von 3 an das Cyclopropen 2 liefert Zwitterion 10; Ringöffnung des Cyclopropyl-Anions zum Allyl-Anion führt wiederum zum 1,3-Dipol 9.

Die Ringöffnung von Cyclopropenen insbesondere unter Einfluß von Metallkomplexen ist bekannt⁵⁾; dabei konnten teilweise auch Carbene durch Cycloadditionen abgefangen werden⁶⁾. Entsprechende Versuche zur Überprüfung der skizzierten Arbeitshypothesen und zum Ausbau des übrigen Syntheseprinzips sind geplant.

Röntgenstrukturanalyse der Verbindung 7

Verbindung 7 besitzt ein pentacyclisches Gerüst. An einen zentralen Fünfring sind zwei Sechsringe mit je einem anellierten Cyclopropan-Dreiring gebunden. Die mögliche Spiegelsymmetrie, die man auf Grund der Abb. 1 erwarten könnte und die durch C1 und die Mitte zwischen der Kernverbindungslinie von C5 und C6 gehen würde, ist nicht realisiert. Dies folgt u.a. aus dem Vergleich möglicher symmetriebezogener Atomabstände und Interplanarwinkel.

Mit Ausnahme der C5-C6-Bindung liegen normale Bindungsabstände vor. Mit 165.2 (3) pm übertrifft sie den Standard-CC-Einfachbindungsabstand um 11 pm. Zurückzuführen ist dies auf die sterische Abstoßung zwischen den Atomen C22 und C24 (272.6 pm) sowie zwischen den Atomen N2 und N3 (277.7 pm). Relativ kurz sind auch

die nichtbindenden Abstände zwischen O22 und O24 (321.4 pm) sowie O23 und O25 (302.7 pm).

Der zentrale C₃N₂-Fünfring besitzt Briefumschlag-Konformation; das N1C5C6N4-Gerüst ist nahezu eben und das C1-Atom ist von der "besten" Ebene durch diese vier Atome 70 pm entfernt. Das C1-Atom trägt die Dimethylvinyl-Gruppe. Die Normale zu dieser Ebene steht auf der Normalen der N1C5C6N4-Ausgleichsebene nahezu senkrecht. Die Normalen zu den ausgleichenden Ebenen der beiden nichtplanaren Sechsringe schließen mit jener der N1C5C6N4-Ebene einen Winkel von 67.9 bzw. 71.1° ein.

In den Sechsringen liegen mit Ausnahme von C2 und C9 tetrakoordinierte Atome vor. C2 und C9 sind sp²-hybridisiert. Die an den Sechsringen anellierten Cyclopropanringe weisen im Gegensatz zu freiem Cyclopropan keine gleichseitigen, sondern gleichschenklige Dreiecke auf.

Die paarweise Anordnung der vier Estergruppierungen täuscht eine höhere Symmetrie vor als tatsächlich vorliegt, denn die Normalen auf den Ebenen durch die Atome C20/O20/O21 sowie C26/O26/O27 schließen einen Winkel von 18°, jene durch die Atome C22/O22/O23 und C24/O24/O25 einen von 40° ein.

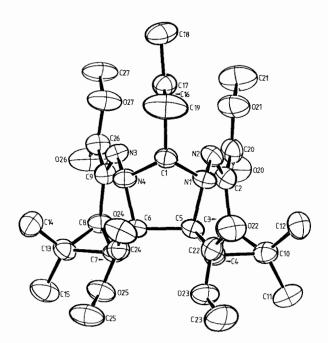


Abb. 1. ORTEP-Plot von Verbindung 7. Der Übersichtlichkeit halber wurden die H-Atome weggelassen

Wir danken dem Fonds der Chemischen Industrie und der BASF-AG für Sachspenden. Die Röntgenstrukturanalysen wurden an der University in Leeds während eines Forschungsaufenthalts eines der Autoren (H. N.) durchgeführt. Für diese Möglichkeit danken wir dem Department for Inorganic and Structural Chemistry.

Chein. Ber. 115 (1982)

Experimenteller Teil

A. Allgemeines

Alle Schmpp. sind unkorrigiert. – IR-Spektren: Modell 157 und 125 der Firma Perkin-Elmer. – UV-Spektren: Modell 14 der Firma Cary. – ¹H-NMR- und ¹³C-NMR-Spektren: Modell T60, XL 100 der Firma Varian MAT sowie WH 90 der Firma Bruker Physik AG. Alle &-Werte sind auf TMS als inneren Standard bezogen. – Massenspektren: Modell CH5 der Firma Varian MAT. – Röntgenstrukturanalyse: Modell Syntex P21. Die Rechnungen zur Strukturlösung wurden am Rechenzentrum der Universität Leeds durchgeführt, die ORTEP-Plots am Rechenzentrum der Universität Manchester gezeichnet.

B. Cycloadditionen zu 3, 4 und 7

1. 3,3-Dimethylcyclopropen (2): Der in der Literatur⁷⁾ beschriebene Weg wurde modifiziert und in größeren Maßstab übertragen:

Zu 150 g (1.34 mol) Kalium-*tert*-butylat wurden bei $-30\,^{\circ}$ C 180 g (3.21 mol) vorher aus einer Druckflasche einkondensiertes Isobuten gegeben. Bei $-24\,^{\circ}$ C tropfte man während 30 min 252 g (0.997 mol) Bromoform zu; anschließend gab man 150 ml vorgekühltes n-Pentan zu und rührte 2 h bei -24 bis $0\,^{\circ}$ C. Nach Zugabe von 600 ml n-Pentan und 150 ml Wasser wurden die Phasen getrennt, die Pentanphase wurde nach Waschen mit Wasser getrocknet und fraktionierend destilliert: 179 g (0.785 mol, 79%) NMR-reines 1,1-Dibrom-2,2-dimethylcyclopropan, Sdp. 57 °C/18 Torr. In kleineren Ansätzen (1/3) kann die Ausbeute bis auf 85% gesteigert werden.

285 g (1.25 mol) 1,1-Dibrom-2,2-dimethylcyclopropan wurden unter Rühren in 800 ml wasserfreier Essigsäure mit 163 g (2.49 mol) frischem Zn-Pulver versetzt. Man kontrollierte die Temperatur in der stark gerührten Reaktionsmischung und hielt sie durch gelegentliches Kühlen bei etwa 50 °C. Der Reaktionsfortgang wurde gaschromatographisch verfolgt. Man brach die Reaktion ab, wenn deutlich 1,1-Dimethylcyclopropan nachweisbar war. Das Zinkpulver wurde abfiltriert, mit 500 ml Wasser und zweimal mit je 100 ml n-Pentan gewaschen. Das gesamte Filtrat wurde mit 2.5 l Wasser versetzt und in zwei Hälften jeweils sechsmal mit je 150 ml n-Pentan extrahiert. Die vereinigten Pentanphasen wusch man mit 2 n NaOH (2 n 100 ml) und Wasser (2 n 200 ml). Fraktionierende Destillation lieferte: 93.5 g (0.628 mol, 50%) 2-Brom-1,1-dimethylcyclopropan, Sdp. 105 – 108 °C/760 Torr, und 64.0 g (0.281 mol, 23%) 1,1-Dibrom-2,2-dimethylcyclopropan, Sdp. 45 – 46 °C/13 Torr.

11.2 g (100 mmol) Kalium-*tert*-butylat und 25 ml absol. DMSO wurden unter N_2 in einem 100-ml-Dreihalskolben mit Tropftrichter (Druckausgleich) und Rückflußkühler vorgelegt. Der Rückflußkühler wurde mit Luft (Wasserstrahlpumpe) gekühlt. Durch die Apparatur leitete man einen schwachen N_2 -Strom (1 Blase/s). Hinter den Rückflußkühler wurde eine Kühlfalle (Durchmesser 33 mm, Höhe 132 mm, $-78\,^{\circ}$ C) und eine zweite Kühlfalle (Durchmesser 36 mm, Höhe 290 mm, flüssiger Stickstoff) geschaltet; die zweite Falle wurde mit einem CaCl₂-Rohr gegen Luftfeuchtigkeit geschützt. Innerhalb 1 h tropfte man bei 90 °C unter heftigem Rühren 15.0 g (101 mmol) 2-Brom-1,1-dimethylcyclopropan zu. Danach rührte man bei gleicher Temperatur noch 3 h weiter. In der ersten Falle kondensierten 4.70-5.80 g (69-85 mmol, 69-85%) NMR-reines-3,3-Dimethylcyclopropen (2).

2. 7,7-Dimethyl-3,4-diazanorcaradien-2,5-dicarbonsäure-dimethylester (3): In einer Kühlfalle wurden bei $-78\,^{\circ}$ C 3 ml kondensiertes 2 mit 20 ml absol. Ether verdünnt und mit 1.98 g (10.0 mmol) fein gepulvertem Tetrazin 1 versetzt. Bei Auftauen setzte die Reaktion unter Gasentwicklung ein, man rührte bei Raumtemp. 2.5 h, anschließend wurde der gelbe Festkörper unter Feuchtigkeitsausschluß filtriert und getrocknet: 1.52 g (6.38 mmol, 64%) gelbes amorphes 3, Schmp. $98-100\,^{\circ}$ C. – IR (KBr): 1740, 1710 cm $^{-1}$. – 1 H-NMR ($C_{6}D_{6}$): $\delta=0.33$ (breites s, 3 H), 0.96 (breites s, 3 H), 2.53 (s, 2 H), 3.56 (s, 6 H). – Aus der Temperaturabhängigkeit des NMR-Spek-

trums errechnet sich bei der Koaleszenztemperatur $T_{\rm c}=339\pm5$ K ein $\Delta G_{\rm c}^{\,\pm}=16.7\pm0.4$ kcal/mol.

C₁₁H₁₄N₂O₄ (238.2) Ber. C 55.45 H 5.92 N 11.76 Gef. C 55.07 H 5.85 N 11.74

Methanol-Additionsverbindung 5-*Methoxy-7*,7-*dimethyl-3*,4-*diaza-2-norcaren-2*,5-*dicarbon-säure-dimethylester* (11): 40.0 mg (0.168 mmol) 3 wurden unter N₂ in 5 ml absol. Methanol 10 h bei Raumtemp. aufbewahrt. Bei Abkühlen auf −78 °C kristallisierten derbe, farblose Kristalle: 30.0 mg (0.111 mmol, 66%), Schmp. 121 −122 °C. − IR (KBr): 3320 (NH), 1750, 1700 (C = O) cm⁻¹. − UV (Methanol): $λ_{max}$ (lg ε) = 284 nm (3.937). − ¹H-NMR (CDCl₃): δ = 0.93 (s, 3 H), 1.23 (s, 3 H), 1.84 und 2.19 (AB-System, J_{AB} = 8.4 Hz, Hochfeldast zusätzliche Kopplung von 2.4 Hz), 3.23 (s, 3 H), 3.87 (s, 6 H), 7.10 (breites s, 1 H). − MS (70 eV): m/e Ber. 270.12156 Gef. 270.12146.

3. exo, exo-3, 3, 7, 7-Tetramethyl-9, 10-diazatetracyclo[3.3.2.0^{2.4}.0^{6.8}]dec-9-en-1, 5-dicarbonsäure-dimethylester (4): Zur gefrorenen Mischung von 9.00 g (132 mmol) 2 und 40 ml absol. Acetonitril gab man bei $-80\,^{\circ}\text{C}$ 6.00 g (30.3 mmol) feingepulvertes Tetrazin 1. Bei aufgesetztem Intensivkühler ($-25\,^{\circ}\text{C}$) ließ man nun das Reaktionsgemisch auftauen, dabei setzte unter Gelbfärbung der Reaktionsmischung eine heftige Gasentwicklung ein; die Reaktionsmischung mußte gelegentlich gekühlt werden. Nach Abklingen der Gasentwicklung wurde die Reaktionslösung fest verschlossen 350 h bei 40 °C aufbewahrt. Der Reaktionsfortgang kann NMR-spektroskopisch verfolgt werden. Durch Abkühlen auf 0 °C und Filtrieren sowie Einengen der Mutterlaugen erhielt man in zwei Fraktionen (5.94; 0.76 g) NMR-reines 4 mit Schmp. 142 – 143 °C. Gesamtausb. 6.70 g (21.0 mmol, 72%). Die Ausbeute kann bis auf 80% gesteigert werden. – IR (KBr): 1740, 1720 (C = O) cm⁻¹. – UV (Methanol): $\lambda_{\text{max}}(\varepsilon) = 372 \text{ nm} (134)$. – ¹H-NMR (CDCl₃): $\delta = 0.97$ (s, 6H), 1.00 (s, 6H), 1.80 (s, 4H), 4.00 (s, 6H).

C₁₆H₂₂N₂O₄ (306.3) Ber. C 62.72 H 7.24 N 9.14 Gef. C 62.94 H 7.19 N 9.30

4. 1,1a,8a,9,9a,9b,9c,9d-Octahydro-1,1,9,9-tetramethyl-5-(2-methyl-1-propenyl)dicycloprop-[d,d']imidazo[1,5-b:3,4-b']dipyridazin-2,8,9b,9c-tetracarbonsäure-tetramethylester (7): Führt man die unter 3. beschriebene Reaktion nicht bei 40°C, sondern unter Rückfluß durch, so erkennt man im NMR-Spektrum neben den typischen Banden von 4 Signale von 7 (Ausb. laut NMR bis zu 12%). Durch fraktionierende Kristallisation aus Ether konnten aus mehreren Ansätzen 520 mg reines 7 gewonnen werden. Mit steigender Reaktionstemperatur steigt der Anteil an 7. -IR (KBr): 3440, 2950, 2920 (CH), 1760, 1732 (C = O) cm⁻¹. – UV (Methanol): λ_{max} (lg ϵ) = 305 (3.844), 273 nm (4.021). - ¹H-NMR (CDCl₃): $\delta = 0.70$ (s, 6H), 1.22 (s, 6H), 1.93 (m, 10H), 3.77 (s, 12H), 5.90 und 6.12 (AB-System, $J_{AB} = 7.8$ Hz, 2H). (CD₃CN): $\delta = 0.63$ (s, 6H), 1.20 (s, 6H), 1.88/1.94 (zwei Signale, 10H), 3.70 (s, 6H), 3.75 (s, 6H), 5.84 und 6.13 (AB-System, J_{AB} = 7.8 Hz, 2H). ([D₅]Nitrobenzol): δ = 0.85 (s, 6H), 1.30 (s, 6H), 1.58 (s, 3H), 1.95 (s, 3H), 2.23/2.28 (zwei Signale, 4H), 3.82 (s, 6H), 3.93 (s, 6H), 6.29 und 6.70 (AB-System, J_{AB} 7.2 Hz, 2H). ([D₅]Pyridin): $\delta = 0.88$ (s, 6H), 1.19 (s, 6H), 1.57 (d, J = 1.3 Hz, 3H), 1.97 (d, J = 1.3 Hz = 1.3 Hz, 3H), 2.37 (s, 4H), 3.78 (s, 6H), 3.84 (s, 6H), 6.46 und 6.89 (AB-System, $J_{AB} = 7.5$ Hz, 2H). $- {}^{13}\text{C-NMR}$ (C_6D_6): $\delta = 15.40$ (q), 19.18 (q), 19.75 (d), 25.25 (s), 25.87 (d), 27.27 (q), 51.79 (q), 52.36 (q), 71.34 (s), 82.28 (d), 116.55 (d), 137.75 (s), 139.62 (s), 164.97 (s), 171.76 (s). -MS (70 eV): $m/e = 544 (1\%; M^+), 247 (100).$

C₂₇H₃₆N₄O₈ (544.6) Ber. C 59.54 H 6.66 N 10.29 Gef. C 59.30 H 6.45 N 10.22

C. Röntgenstrukturanalyse von 7

Von einem Einkristall $(0.3 \times 0.3 \times 0.2 \text{ mm}^3)$ wurden durch Zentrieren von 25 Reflexen mit $2\Theta = 30 - 36^\circ$ die Dimensionen der Elementarzelle nach einem kleinsten Fehlerquadratverfahren bestimmt: a = 1008.7 (2) pm, b = 1532.1 (2) pm, c = 999.0 (2) pm, $\alpha = 91.95$ (1)°, $\beta = 111.02$ (1)°, $\gamma = 100.06$ (1)°; V = 14.112 (4) 10^8 pm³; $d_r = 1.28$; Raumgruppe $P\bar{1}$, Z = 2.

Chem. Ber. 115 (1982)

Die Datensammlung erfolgte mit dem ω -Scan mit variierender Meßgeschwindigkeit $(2-29.3^{\circ}/\text{min})$ für alle Reflexe im Bereich $2\Theta=4-45^{\circ}$.

Tab. 1. Atomkoordinaten und U_{ij} der anisotropen Temperaturfaktoren und U's der isotropen Temperaturfaktoren der Verbindung 7

	x	У	z	u ₁₁	U ₂₂	U ₃₃	^{2U} 23	2U 31	2012
C1 C2 C3 C5 C5 C6 C7 C8 C10 C11 C12 C14 C15 C16 C17 C18 C20 C21 C22 C22 C22 C22 C22 C22 C22 C22 C23 C27 NN	x (26) 0.85393(26) 0.86393(26) 0.86393(26) 0.98679(27) 1.04381(22)	0.15361(16) 0.38154(16) 0.42516(16) 0.36530(15) 0.26698(14) 0.25629(16) 0.27996(17) 0.24345(17) 0.24345(17) 0.24345(17) 0.21376(20) 0.1176(27) 0.11463(17) 0.12057(21) 0.12057(21) 0.12057(21) 0.2057(21) 0.2057(21) 0.3314(16) 0.00272(27) 0.3314(16) 0.3314(16) 0.3314(16) 0.34281(18) 0.34281(18) 0.3467(32) 0.32627(15) 0.3467(32) 0.32627(15) 0.3463(33) 0.1314(16) 0.89993(27) 0.27621(17)	2 1.22017 (26) 1.22548 (28) 1.21548 (28) 1.21548 (28) 1.21548 (28) 1.21548 (28) 1.21548 (28) 1.21548 (28) 1.21548 (28) 1.22548 (28) 1.22548 (28) 1.22548 (28) 1.22548 (28) 1.23548 (28) 1.23548 (28) 1.23551 (28) 1.2	011 378 (15) 439 (16) 494 (17) 403 (15) 357 (14) 302 (13) 303 (14) 328 (15) 348 (15) 531 (21) 551 (22) 551 (22) 426 (15) 551 (22) 575 (22) 427 (16) 415 (15) 522 (22) 422 (16) 431 (20) 372 (15) 522 (22) 422 (16) 527 (25) 431 (20) 372 (15) 526 (23) 373 (15) 527 (25) 527 (25) 527 (25) 527 (25) 527 (25) 527 (25) 527 (25) 527 (25) 527 (25) 527 (25) 527 (25) 527 (25) 527 (25) 527 (25) 527 (27	0 22 336 (14) 3 352 (15) 312 (14) 326 (13) 331 (14) 326 (13) 334 (13) 326 (13) 327 (16) 623 (27) 623 (933 444(16) 500(17) 459(16) 430(17) 431(16) 437(16) 43	23 23 257 (24) 100 (24) 251 (26) 100 (24) 251 (26) 108 (24) 179 (25) 146 (25) 359 (26) 142 (24) 99 (25) 142 (24) 99 (25) 142 (24) 140 (25) 140 (27)	2031 398(25) 395(25) 457(27) 374(23) 374(23) 374(23) 374(23) 374(23) 374(23) 374(23) 374(23) 374(23) 374(23) 374(23) 374(23) 374(25) 377(27) 3	201(2) 201(2) 201(2) 201(2) 21(2) 22(2) 21(2) 22(2) 21
026	0.55666(19)	0.32899(14) 0.24459(12)	0.74585(23) 0.88011(20)	480(12) 400(11)	918(16) 762(13)	912 (16) 778 (14)	1141 (28) 785 (22)	599 (23) 600 (21)	510 (22) 489 (20)
	x	у	z	U			-		
H11 H31 H41 H41 H111 H112 H123 H123 H123 H151 H155 H161 H162 H163 H17 H183 H191 H183 H191 H183 H191 H213 H213 H213 H221 H223 H231 H231 H23	0. 914.5 (206. 1.9) (201. 1.9) (2	0.12162 (123) 0.47202 (1405) 0.37734 (135) 0.3734 (135) 0.3734 (135) 0.3746 (147) 0.56619 (172) 0.56619 (172) 0.36669 (199) 0.46069 (199) 0.39588 (184) 0.35826 (208) 0.1378 (174) 0.08530 (184) 0.22157 (171) 0.32662 (201) 0.14471 (171) 0.04016 (220) 0.07362 (408)	1, 25885 (200) 1, 1541 3 (276) 1, 16027 (231) 0, 993 (271) 1, 2665 (227)	215 (53) 331 (60) 350 (63) 340 (61) 369 (63) 599 (78) 599 (78) 599 (78) 599 (78) 798 (79) 798					

Der nach je 50 Messungen angefahrene Standardreflex zeigte keine signifikanten Intensitätsschwankungen. Von den gemessenen 3722 Intensitäten dienten 2736 mit $I > 2 \sigma(I)$ zur Strukturlösung mit Direktmethoden (MULTAN 80) 8). Die beste Lösung mit $E_{\min} > 1.45$, Wahrscheinlichkeitsgrenze 0.95, führte zu einer E-Map, der alle Nichtwasserstoffatome zu entnehmen waren.

Bindungs	abstände	Bindungswinke	el	Bindungswinkel							
C1-C16 C1-N1 C1-N4 C2-C3 C2-C20 C2-N2 C3-C4 C3-C10 C4-C5 C4-C10 C5-C22 C5-N1	148.3(4) 148.5(3) 149.8(3) 149.8(3) 146.3(4) 148.9(4) 129.1(3) 150.3(4) 153.2(3) 151.1(3) 150.8(3) 153.7(3) 148.4(4)	C16-C1-N1 C16-C1-N4 N1 -C1-N4 C3 -C2-C20 C3 -C2-N2 C20-C2-N2 C2 -C3-C4 C2 -C3-C10 C4 -C3-C10 C3 -C4-C5 C3 -C4-C10 C5 -C4-C10	117.3(2) 115.1(2) 101.8(2) 117.4(2) 125.6(2) 116.8(2) 119.8(2) 59.6(2) 118.0(2) 61.2(2) 122.6(2)	C7 -C13-C15 C8 -C13-C14 C8 -C13-C15 C14-C13-C15 C1 -C16-C17 C16-C17-C19 C18-C17-C19 C2 -C20-020 C2 -C20-021 020-C20-021 05-C22-022	116.2(2) 120.1(2) 115.1(2) 115.1(2) 113.6(2) 124.1(2) 121.7(3) 124.9(3) 113.4(3) 112.5(2) 113.7(2) 123.8(2) 123.8(2) 126.4(2)						
C5-C6 C6-C7 C6-C24 C6-N4 C7-C8 C7-C13 C8-C9 C9-N3 C10-C11 C10-C12 C13-C14 C13-C15 C17-C18 C17-C18 C17-C18 C20-020 C20-021 C21-021	165.2(3) 151.5(4) 153.3(4) 149.8(3) 150.1(3) 150.2(3) 146.2(4) 152.0(4) 148.6(3) 128.6(3) 151.0(4) 150.9(5) 151.9(4) 151.1(5) 131.9(4) 131.9(4) 149.7(5) 148.5(6) 119.9(4) 132.2(4) 145.0(5) 119.1(3)	C4 - C5 - C6 C4 - C5 - C2 C4 - C5 - C1 C6 - C5 - C2 C6 - C5 - N1 C5 - C6 - C7 C5 - C6 - C2 C5 - C6 - C2 C7 - C6 - C2 C7 - C6 - C2 C7 - C6 - C2 C6 - C7 - C1 C6 - C7 - C1 C8 - C7 - C1 C9 - C8 - C1 C9 - C8 - C1 C8 - C9 - C1 C8 - C9 - C2	115.1(2) 107.1(2) 112.9(2) 111.5(2) 103.2(2) 106.8(2) 114.2(2) 109.4(2) 110.9(2) 110.9(2) 113.4(2) 106.0(2) 117.9(2) 124.4(2) 59.6(2) 119.7(2) 119.7(2) 117.3(2) 125.5(2) 117.1(2)	C5 - C22 - O22 C5 - C22 - O23 O22 - C22 - O23 C6 - C24 - O25 O24 - C24 - O25 C9 - C26 - O27 O26 - C26 - O27 O26 - C26 - O27 C1 - N1 - C5 C1 - N1 - N2 C5 - N1 - N2 C9 - N3 - N4 C1 - N4 - C6 C1 - N4 - N3 C6 - N4 - N3 C20 - O21 - C21 C22 - O23 - C23 C24 - O25 - C27	126.4(2) 109.4(2) 124.3(2) 124.3(2) 112.5(2) 123.1(2) 122.2(2) 115.0(2) 122.8(2) 103.5(2) 110.4(2) 121.2(2) 121.2(2) 121.1(2) 107.6(2) 116.3(2) 116.3(2) 115.5(2)						
C22-023 C23-023 C24-024 C24-025 C25-025 C26-026 C26-027 C27-027	133.6(4) 145.4(4) 119.8(3) 132.7(4) 145.4(5) 119.9(4) 131.3(4) 145.0(4)	C3 -C10-C4 C3 -C10-C11 C3 -C10-C12 C4 -C10-C11 C4- C10-C12 C11-C10-C12 C7 -C13-C8 C7 -C13-C14	59.2(2) 116.3(2) 113.3(2) 115.6(3) 122.6(2) 113.3(2) 59.6(2) 122.0(2)								

Tab. 2. Bindungsabstände (in pm) und Bindungswinkel (in Grad) mit Standardabweichungen 9)

Die Verfeinerung des Strukturmodells mit isotropen Temperaturfaktoren ergab nach 5 Cyclen einen R-Wert von 0.141; nach Einführung anisotroper Temperaturfaktoren konvergierte R bei 0.093. Nun ließen sich aus einer Differenz-Fourier-Synthese die Lagen aller H-Atome entnehmen. Die Verfeinerung konvergierte mit freigegebenen B-Werten für die H-Atome schließlich bei R=0.037. Tab. 1 enthält die Atomkoordinaten und U_{ii} bzw. U-Werte der Temperaturfaktoren.

¹⁾ M. Avram, J. G. Dinulescu, E. Marica und C. D. Nenitzescu, Chem. Ber. 95, 2248 (1962).

²⁾ G. Heinrichs, H. Krapf, B. Schröder, A. Steigel, T. Troll und J. Sauer, Tetrahedron Lett. 1970, 1623; D. A. Kleier, G. Binsch, A. Steigel und J. Sauer, J. Am. Chem. Soc. 92, 3787 (1970).

³⁾ H. D. Fühlhuber, C. Gousetis, T. Troll und J. Sauer, Tetrahedron Lett. 1978, 3903.

⁴⁾ R. Dyllick-Brenzinger, J. F. M. Oth, H. D. Fühlhuber, C. Gousetis, T. Troll und J. Sauer, Tetrahedron Lett. **1978**, 3907; H. D. Fühlhuber, C. Gousetis, J. Sauer und H. J. Lindner, ebenda **1979**, 1299.

⁵⁾ Siehe z. B. G. K. Barker, W. E. Carroll, M. Green und A. J. Welch, J. Chem. Soc., Chem. Commun. 1980, 1071.

⁶⁾ P. Binger und J. McMeeking, Angew. Chem., Int. Ed. Engl. 13, 466 (1974); P. W. Jolly und G. Wilke, The Organic Chemistry of Nickel, Vol. II, Academic Press, London 1975.

⁷⁾ P. Binger, Synthesis 1974, 190.

⁸⁾ Verwendet wurden hierfür und für die weiteren Berechnungen – außer MULTAN 80 und ORTEP – von W. S. McDonald erstellte Programme.

⁹⁾ Die Daten zur Kristallstrukturbestimmung sind beim Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, hinterlegt.